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Downwind computational boundaries in the numerical approximation of hyperbolic 
equations are in general not transparent, and they create spurious reflection, A useful measure 
of this is given by the energy (or usual sum of squares) of the reflected solution in response to 
an arbitrary solution which originates from within the computing domain. We prove, in that 
respect, a somewhat unexpected property: namely, that for those full-discretizations which are 
obtained by applying to a space-discretization of the equations an energy conservative discrete 
time-marching method, the energy reflected at the boundary is independent of the value of dr, 
and is strictly equal to the energy reflected in the semidiscrete case. This is verified in 
numerical experiments. Optimal boundary equations may be defined in the semidiscrete case 
of those which maximize the rate of convergence to zero of the reflected energy when h + 0. A 
corollary of the preceding result is that those boundary equations remain optimal, in the same 
sense, when used in an energy conservative full discretization. Moreover, this convergence 
result continues to hold when a nonconservative but stable (i.e., dissipative) time-dis- 
cretization is used. This is verified numerically with the first-order Adams predictor-corrector 
method. The results of this paper are derived with the mathematics of the simple three-point 
central difference discretization of spatial derivatives. Obvious generalizations to other cases 
are mentioned at the end of the paper. ’ I%6 Academx Press. Inc 

Consider the half space 

I. INTRODUCTION 

DE(-m,O] 

on which the simple advection equation 

is approximated by the central differences semidiscretization: 

(1) 

(2) 

(3) 
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in interior points, and by an equation of the form 

&&?!?-b u -b ~ - duo 
dt 0 0 1u 1 ... fx- B.uo=O 

at the boundary x = 0. Fully discrete approximations are obtained when a discrete 
time-marching method is applied to (3) (4). This may be expressed in operator 
notations as 

M(Z).uy=A**u; (24:‘N U(jh, ndt)), (5) 

where A* is the discrete spatial operator consisting of A in interior points and B at 
the boundary, and the operator M, which approximates d/at, contains the time-shift 
operator Z defined by the identity 

Z?pU;+‘. (6) 

The theorems which shall be derived in this paper are concerned with certain 
properties of the spurious reflection which occurs at the numerical boundary. For 
simplicity, we shall establish those theorems in the particular case of time dis- 
cretization with the Crank-Nicolson (or trapezoidal) method, and will describe 
thereafter which of the corresponding results may carry over to other cases. 

The operator notation for the Crank-Nicolson method is 

M(Z)=& G 
( > 

and (5) may also be rewritten in that case as: 

J #“I;;q** (q+‘“‘)- 

(7) 

(54 

2. FOURIER ANALYSIS 

Spurious reflection at the numerical boundary may be analyzed by Fourier 
methods. We briefly recall the basic properties that shall be used: 

The t-Fourier transform of uj(t) is defined, in the semidiscrete case 

(8) 

(it is assumed, here and in further occurrences of Fourier transforms, that the 
functions being transformed are of finite 2; or I, norm). If the set of functions 
{ uj(t)) is a solution of (3) in D, then it may be decomposed in two components 
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whose Fourier transforms satisfy 

and 
4j+ l(O) 
-= -i$-&-(Z/$=l?q(w), 

4jtw) 

respectively. This is obtained by taking the Fourier transform of Eq. (3), thus 
resulting in a difference equation for tij(w). This equation is solved by solving the 
corresponding quadratic characteristic equation whose two roots are (10) and (11). 

Sinusoidal wave propagation may exist for frequencies less than the cut-off fre- 
quency w, given by 

w,h -= 1 or 
C 

WC==5 
h 

The group velocity of solutions of p type (in (01 CO,) is positive: these are right- 
going solutions. The group velocity of solutions of q type is negative: these are left- 
going solutions. 

When a rightgoing solution arrives from D at the boundary, it is partially reflec- 
ted toward D as a leftgoing solution. An expression of this is given by the ampZitude 
reflection ratio p(w), obtained by taking the t-Fourier transform of the boundary 
equation (4), and then solving for &(w)/~,,(w). 

To obtain the corresponding relations in the fully discrete case, one has to work 
with discrete t-Fourier transforms 

F(w)=& f - ionA u;e . (13) 
II= -cc 

One then takes the discrete Fourier transform of Eq. (5). Solving for r+ I(w)/r(w) 
in interior points results in a quadratic characteristic equation which is identical to 
that of the semi-discrete case, save for the replacement of o by p(w), the spectral 
function or symbol of the operator M, defined as 

ip(w) E “‘“?,,%“““’ = M(erwAr). 
e 

(14) 

Accordingly, we have in the fully discrete case 

b,“J = b-g + 14;L (94 
7$+ l(W) . P(W) h 
TgF 

= -i-+/~=&JI((w)), (lOa) 
c 

T+ 1(w) .P(w) h -= 
?j(w) 

-l--J~=~&(w)), (lla) 
C 
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FIG. 1. Amplitude reflection ratio for the 2-point equation (40): 

PMW)) = CJl - M~)(wc))2 - MJl - (P(~)(~/c))2 + 1). 

where ,$p and g’y are the same operators as in (10) and (1 l), except for the dif- 
ference in arguments. 

In the particular case of the Crank-Nicolson method we shall have 

p(o)=-$tan y . 
( ) 

The cut-off frequency is given in the fully discrete case by 

p(w& 1 

or (Crank-Nicolson case) 

2 
0, = dt arctan 

3. ENERGY 

The energy (or square of the I2 norm) of (tij} on D is defined as: 

(15) 

(16) 

(16a) 

It may be expressed in Fourier space by the appropriate form of Parseval’s relation 

alh E, E 
-nlh 

,‘;;c<),’ 2 = I”‘” ,Yi(5)12 f , 
0 

(18) 
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where i?( 5) is the discrete x-Fourier transform of the set {u,} defined as 

T([)=h 1 ujepiuh. 
jc0 

(19) 

We note that those relations are generally given for functions defined on ( - co, co). 
That they also apply in the case of a semi-infinite domain such as D may be verified 
by simply assuming that the domain of definition is still (-co, co), but that the 
numerical value of u is zero outside of D. (This remark shall also apply to the t- 
Fourier transforms used in (27), (28).) 

The relationship of the wave number < to the frequency o is given by the disper- 
sion relation which is 

co= -isin (20) 

in the semidiscrete case, and 

p(w) = -i sin(@) 

in the fully discrete case. That p(w) is real for all o in the Crank-Nicolson case 
results in the fact that energy is conserved in D: the fully discrete scheme is energy 
conseruatiue, and the only changes in E, are those which may result from energy 
flow across the boundary. 

The x-Fourier transform of rightgoing solutions has its support in It, 1 E [0, ~/2/z) 
and that of leftgoing solutions in I<,1 E (x/2/7, X//Z]. This results in the important 
property that the leftgoing and rightgoing components of the energy are separated 
in Fourier space as 

=E,+Eq. (22) 

As for E,, both E, and E, are constant except for changes which may result from 
energy flow across the boundary. 

4. INVARIANCE THEOREMS 

We may now state the energy reflection invariance theorems which are the main 
results of this paper: 

Consider the semidiscretization (3) of (2) on the semi-infinite domain (1) with 
the semidiscrete equation (4) used at the outflow boundary x = 0. Consider also the 
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numerical integration of these semi-discrete equations by the Crank-Nicolson 
method. 

When initial data (uj(0)} are imposed on D, the subsequent solution consists of a 
leftgoing and a rightgoing component. The rightgoing component of (u/(O)} is par- 
tially reflected at the boundary as a leftgoing solution and one may measure the 
performance of B by the smallness of the reflected energy 

or by the smallness of the energy remaining in D, 

where t$ is the energy in the leftgoing component of {u,(O)}. In that respect, we 
shall prove that: 

THEOREM 1. The total energy reflected by 93 is, for a constant h, independent of 
the value of At, and is strictly equal to ~2 for the semidiscrete model. 

A second theorem concerns convergence rates. Let {uj(0)} be obtained by sampling 
an initial U(X, 0) at the mesh points x, =jh and let h -+ 0. We may define an optimal 
boundary equation a as one which maximizes the rate of convergence to zero of 
the reflected energy in the semidiscrete case (3) (4). Then, 

THEOREM 2. The convergence rates of 93 when h + 0 in the energy norm of the 
reflected solution for the semidiscrete and the fully discrete schemes are identical (and 
is, in the fully discrete case, independent of values taken by the ratio AtJh). A boun- 
dary formula 93 which is optimal for the semidiscrete equations remains optimal for 
the corresponding full-discretizations. 

5. PROOF OF THEOREM 1 

Reflection at the Boundary in the Semidiscrete Case 

Consider an initial solution {u,(O)} in D. Its rightgoing component will, for large 
t, have passed entirely through the boundary point x = 0, where it will have been 
partially reflected into D as a leftgoing solution. We consider the semi-discrete case 
at first: 

If J&(W) and Go(w) are the t-Fourier transforms of the incident and reflected 
solutions in x =O, then the amplitude reflection ratio-obtained by taking the t- 
Fourier transform of (4) and using (10) and (11 )-is found to be 

p(o)A& - iw-b,-b,l?;‘(o)- ... 
io-ho--b,E;‘(o)- ...’ (24) 
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During reflection, each rightgoing sinusoidal component of wavenumber [(,I in 
[0, n/2/r) generates a leftgoing sinusoidal component of wavenumber I<,1 in 
(7c/2h, z//z] corresponding to the same value of o through the dispersion relation 
(20), i.e., 

IL/l =f- 14pl, (25) 

where rP and 5, have the same sign. 
Moreover (also through the dispersion relation), the corresponding group 

velocities may be verified to satisfy 

Gkt,) = -G(t,). (26) 

IfF(;(5,, 0) is the x-Fourier transform of the rightgoing component of {uj(0)}, then 
its amplitude is related to that of the t-Fourier transform of the resulting p,,(t) as 
the boundary by the relation which is a consequence of energy conservation [7] 

I iM~)l = lP&, WW,)l. (27) 

Likewise, if do(o) is the t-Fourier transform of the reflected solution at the boun- 
dary, then its amplitude is related to that of the resulting T,+(<,, t) by [7] 

,‘i; ITR(S~, tYG(5,N = I4do)l. (28) 

We may combine these results to give 

where p(t) (instead of p(w)) is derived with the dispersion relation (20), i.e., by 
substituting -(c/h) sin(#) for w  in the expression (24) of the reflection ratio, 

P(~)=P 
! 

w= -isin 
j 

=p,(t) (30) 

(the subscript s refers here to the semidiscrete case). What this establishes is that 
the amplitude of the reflection ratio also applies to the amplitude of x-Fourier 
transform in t = 0 and t + co, respectively. And the total energy reflected at the 
boundary may therefore be expressed as 

Em - R,S - lim h 1 Iq,,(t)l’= lim Jz’” IFR(t, t)12f 
t-m j-co I+ = n/2h 

= (31) 
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Reflection at the Boundary in the Fully Discrete Case 

The mathematics leading to the derivation of (30), (31) may be repeated iden- 
tically in the fully discrete case, with p(w) replacing o, and we obtain for the 
amplitude reflection ratio (the subscript F refers here to the fully discrete case 

PF(O) = PSMW)) 

= -j~(O)-ho-hl~;‘(~(O))- ... 
j~~(W)--60--,Eq1(~(0))- ... ’ (32) 

which is identical to (24), except for the difference in arguments. We may express 
the energy reflected at the boundary by the equation which corresponds to (31), 

where p,-(r) is to be derived from Pi by use of the dispersion relation (21). That 
is, ,u(w) is to be replaced by -(c/h) sin(rh). But we may observe that the 
corresponding expression is identical to (30) obtained in the semidiscrete case, 

PF(~)=PF P(W)= -isin > 
= P,(5). 

(34) 

That is, the amplitude reflection ratio (in x-Fourier space) for the full- and 
semidiscretizations are identical. Thus, the expression of the reflected energy is (31) 
in the fully discrete as well as in the discrete cases, and, therefore 

E” R,F = ‘R”,S, 

which proves the theorem. 

(35) 

6. CONVERGENCE RATES AND PROOF OF THEOREM 2 

The proof of Theorem 2 is of course contained in (35), but deserves some 
amplification: 

Consider an initial U(x, 0) in D, and the discrete set obtained by its sampling 

{ ujCO,> = Wh, 0). 

In general, the Fourier transforms ?(t;, 0) and 6({, 0) will differ: components of 
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o(t, 0) beyond the sampling wavenumber /<,s ( = n/h are folded into /[I E 10, n/h/ by 
the sampling relation. But the difference, measured in an energy norm, becomes 
negligible when h + 0 for any well-behaved U(x, 0). 

The initial 7(<, 0) is separated into its leftgoing and rightgoing components by 
the wave number It,) = x/2h. When h + 0 then jr<) -+ cc and here also the dif- 
ference between {UP} and {p,(O)} b ecomes negligible. We may thus write in the 
energy norm: 

II @t, 0) -Z4,O)llz = O(h”), (37) 

where k is a large number for any well-behaved U(x, 0). Therefore, we may analyze 
convergence rates of the reflected solutions at the boundary when h + 0 by (3 1) or 
(33) with li(& 0) replacing’j?([, 0) or F(t). It may then be verified algebraically that 
the rate of convergence to zero of the reflected energy at the boundary is twice that 
of p(r) when <h -+ 0, which is the same as twice that of p(w) when oh -+ 0. 

One may define optimal boundary equations as those which, for a given number 
of terms in (4), maximize the order of the corresponding reflection ratio (examples 
of such high-order boundary equations may be found in [9]). From (35) it follows 
that both rates of convergence and optimally are preserved when one goes from the 
semidiscrete to the corresponding fully discrete case. Which proves Theorem 2. 

7. NUMERICAL EXPERIMENTS 

Smooth solutions may be considered as wave packets of wavenumber It, I + 0. 
To these correspond reflected solutions of wave number ) 4, / + n/h. These reflected 
solutions are modulated sine functions, of wavelength i + 2h, with a characteristic 
sawtoothed appearance. This case is treated in the following numerical example: 

The Gaussian initial function 

U(x, 0) = e -(l:2)r(.r rg)irr~2 5 xg= -50, CT= 10 (38) 

was prescribed on the domain 

D = [ - 100, O] (39) 

on which U,+ cU, = 0 is approximated by (3) with h = 1 in D, and the two-point 
equation: 

at the downwind boundary. Time marching is implemented with the 
Crank-Nicolson method. Initial conditions for the numerical calculation are 
obtained by sampling U(x, 0) at the mesh points. 
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Some comments are in order. First, it may be verified that the energy of the 
Gaussian (38) which lies outside of the finite domain D is less than 10P” times its 
total energy. Second, the energy of the Fourier transform of U(x, 0): 

L 

lfi(<, O)l = fi oe -(1’2)rr2e2 (41) 

which lies outside of the p band It,/ E [0, n/2h) is less than lo- ” times this total 
energy. The asymptotic approximations 

m, 0) =vr, 0) =xr, 01, (42) 

‘;i(t> 0) = 0, (43) 

thus hold to within the accuracy of the calculation (8 significant digits). The time 
evolution of the numerical solution is illustrated in Fig. 2. 

time 

FIG. 2. Partial reflection of a smooth solution at the boundary (two point boundary equation (40). 
Courant number R = 0.1). Both incident and reflected solutions are wave packets, of wave number near 
5, = 0, and ry = n/h, respectively. The group velocity of the reflected solution is G&co = 0) = -C. Its 
phase velocity is zero. 

581/63/2-3 
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Both incident and reflected wave packets have, to within computing accuracy, a 
finite support in D. This fact is illustrated in Fig. 3 giving the measured energy 

(44) 

versus time (see also Table I), which verifies the zero time-derivative of E, near t = 0 
(when the initial solution has not yet reached the boundary) and after t = 80 when 
reflection has been completed. 

The asymptotic value of the reflected energy (measured by (44) for large n) 
agrees to within arithmetical accuracy with the integral (31) evaluated by numerical 
quadrature (~2 = 1.37509...10-3). 

Verification of Theorem 1 is obtained by repeating the calculation with values of 
At corresponding to a Courant number 

cAt 
R=h (45) 

varying from R = 0.05 to R = 7.0. The variation of the energy with time measured 
with (44) (see Fig. 4 and Table I) shows that, as expected, the nature of the 
numerical solution is affected by changes in At. But the asymptotic value qf the 
reflected energy E; is indeed an invariant. 

. 

FIG. 3. Energy versus time for the example illustrated in Fig. 2. The final value of E (which is the reflec- 
ted energy) does not show on this figure (linear scale) but appears clearly on Fig. 4 (logarithmic scale). 



REFLECTION AT NUMERICAL BOUNDARIES 279 

TABLE I 

Illustration of the Invariance of the Reflected Energy to Time-Discretization 

Note. These numbers, which contain those used to obtain Fig. 4, have been obtained by numerical 
integration of (3t(40) with the Crank-Nicolson method, h=constant and variable Af or R. The tinal 
value E? = 1.375...10-3 is also obtained to within arithmetical accuracy by numerical quadrature of 
(31-(41). 

logarithmic scale 

’ 20 40 60 80 100 120 140 160 180 200 t 

FIG. 4. Energy vs. time for the same numerical experiment repeated for increasing values of At (or 

Courant number R). 
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8. DISCUSSION OF OTHER CASES 

While the invariance theorems have been established for the 3 point central dif- 
ference Crank-Nicolson method, their applicability extends obviously beyond that 
simple case. A first case of interest is the leapfrog method of time marching which is 
also of the form (5) with M given by 

M=z-z-’ 
2At ’ 

Its spectral function is 

!-da)= 
sin(oAt) 

At . (47) 

This method, used with the central difference discretization (3) is known to be 
stable when R 6 1. That p(o) is real (when stability exists) indicates that this 
method is also energy conservative in D. But to each 4 there corresponds now 
through the dispersion relation two values of the frequency w. One is in 

/@I do, =Aarcsin(R) 

(which may be called the consistent band) and the other is in 

(which may be called the spurious band). There are four types of fundamental 
solutions: two with positive group velocities, and two with negative group 
velocities. Rightgoing solutions in the consistent band are reflected as leftgoing 
solutions with an amplitude reflection ratio Pi given by (32). Rightgoing 
solutions in the spurious band corresponding to the same pair 5, - 5, are reflected 
with an amplitude reflection ratio equal to l/pF(w). 

In particular rightgoing solutions in the spurious band corresponding to lP = 0 
have an infinite reflection ratio at the boundary: This results in numerical instability 
[3,4]. While one could argue that Theorems 1 and 2 continue to apply to solutions 
restricted to the consistent band (and one can, indeed, construct such solutions), 
numerical instability in the other band makes the argument somewhat academic. 

But one may find other energy conservative time marching methods for which 
the theorems continue to apply strictly. A sufficient condition is that the 
corresponding p(w) be a single-valued real monotonic function of w. (consistency 
requires also that ~(0) = 0; p’(0) = 1.) 

An example is given by the method which consists in dividing At in two nonequal 
intervals 

Pt and (1 -j?) At (O<fi<OS) (50) 
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and using the Crank-Nicolson algorithm over each subinterval, resulting in 

pL(o)= p(1 -p) Lit* [ 
4 tan (Ei!$) tan (” pt)odr)]“2. (51) 

The case of nonenergy conservative methods is also of interest. An example is given 
by the first-order Adams method: 

u!+‘=q+AtA*.u;, 
JrP 

u?+‘=u;+AtA*.u;;‘, 
(52) 

J 

which may also be expressed as 

uy+ ’ - ui” = [AtA* + (AtA*)*]. ui”. 
J (53) 

This method is known to be numerically stable with (3) when R 6 1. But it is 
energy dissipative. Moreover, we may observe that it is not of the separable form 

EFI 

reflected energy 

lowlthmic scale 

N3- 
‘B 

1o-4-- 
\ 

-\ 

10-5- 

10-6.. 

\ 
N7-. 

: 

10-g-. . = Adams’ first order \ 
: 

10-g.. 
. = conservstive 

10-10.. 
\ 

0.5 1 2 5 10 20 l/h 

2 1 0.5 0.2 0.1 0.05 h 

FIG. 5. Comparison of the reflected energy for the Adams first-order (dissipative) and the conservative 
(semi-discrete or Crank-Nicolson) methods. Initial conditions are those of Fig. 2 (or Eq. (38)). Courant 
number R = 0.4 in all cases. The difference of reflected energies goes to zero as h + 0 verifying the same 
rate of convergence for both. ea is measured in t = 100 in the Adams case, and computed by numerical 
quadrature of (31 t(41) in the conservative case. 
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(5). Theorem 1 ceases to hold, but Theorem 2 may be shown to still apply modulo 
a minor modification of definition as follows: 

Let U(x, 0) be (save for possible remainders of negligible energy) of finite support 
near x = 0. in D and of finite support near 5 = 0 in x-Fourier space, i.e., 

c&i”, 0) -0 when It/ > ~1, 

U(x, 0)-O when x < -6 
(54) 

(a and 6 positive and finite). For some small h, there is then a finite time z at which 
reflection is completed (except for a possible remainder of negligible energy). Also, 
stability of (52) requires that dt + 0 as h --+ 0, and solutions of that equation tend to 
solutions of (3), (4) in TV [0, r]. Theorem 2, which is concerned with convergence 
rates, may be shown to hold, provided that Ed be defined in t = z instead of t + cc. 

The proof is reasonably straightforward and shall be omitted. Given in Fig. 5, 
however, is an experimental verification of this interesting result. It is of course the 
case that these theorems may be extended to other spatial discretization schemes, 
but this may require a modification of the definition of energy. One may find in 
[lo] the underlying mathematics which apply to the case of semidiscretizations 
obtained with linear finite elements, where such a modified form of conserved 
energy is found. 
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