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Downwind computational boundaries in the numerical approximation of hyperbolic
equations are in general not transparent, and they create spurious reflection. A useful measure
of this is given by the energy {or usual sum of squares) of the reflected solution in response to
an arbitrary solution which originates from within the computing domain. We prove, in that
respect, a somewhat unexpected property: namely, that for those full-discretizations which are
obtained by applying to a space-discretization of the equations an energy conservative discrete
time-marching method, the energy reflected at the boundary is independent of the value of A1,
and is strictly equal to the energy reflected in the semidiscretc case. This is verified in
numerical experiments. Optimal boundary equations may be defined in the semidiscrete case
of those which maximize the rate of convergence to zero of the reflected energy when 2 0. A
corollary of the preceding result is that those boundary equations remain optimal, in the same
sense, when used in an energy conservative full discretization. Moreover, this convergence
result continues to hold when a nonconservative but stable (ie., dissipative) time-dis-
cretization is used. This is verified numerically with the first-order Adams predictor-corrector
method. The results of this paper are derived with the mathematics of the simple three-point
central difference discretization of spatial derivatives. Obvious generalizations to other cases
are mentioned at the end of the paper. 1986 Academic Press, Inc

[. INTRODUCTION

Consider the half space
D=(—o,0] (1)

on which the simple advection equation
—tc—= (c>0) (2)

is approximated by the central differences semidiscretization:

du; Uy, —U;
J j+ 1 131 __ .
= | L) =A u(t)y~U(jh,t 3
7 7 ;o (w(t)=U(jh, 1)) 3)
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in interior points, and by an equation of the form

du du
@E'ﬁ—bouo_blufl_"'E‘aTO"B'uozo 4)

at the boundary x=0. Fully discrete approximations are obtained when a discrete
time-marching method is applied to (3), (4). This may be expressed in operator
notations as

M(Z) ul=A* u; (u] =~ U(jh, ndt)), (5)

where A* is the discrete spatial operator consisting of A in interior points and B at
the boundary, and the operator M, which approximates ¢/0, contains the time-shift
operator Z defined by the identity

Z-w=ut'. (6)

The theorems which shall be derived in this paper are concerned with certain
properties of the spurious reflection which occurs at the numerical boundary. For
simplicity, we shall establish those theorems in the particular case of time dis-
cretization with the Crank-Nicolson (or trapczoidal) method, and will describe
thereafter which of the corresponding results may carry over to other cases.

The operator notation for the Crank-Nicolson method is

2 (Z—1
Mo =7 (77) ")
and (5) may also be rewritten in that case as:
u}{:+1__u;: uf'+1+uf‘
L T =A¥ | L — ), 5
A1 < 2 (5a)

2. FOURIER ANALYSIS

Spurious reflection at the numerical boundary may be analyzed by Fourier
methods. We briefly recall the basic properties that shall be used:
The t-Fourier transform of (1) is defined, in the semidiscrete case

ifo)= [ wulr)e o d (8)

(it is assumed, here and in further occurrences of Fourier transforms, that the
functions being transformed are of finite %, or /, norm). If the set of functions
{u;(1)} is a solution of (3) in D, then it may be decomposed in two components

{uy={p} + {a;} 9)
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whose Fourier transforms satisfy

i) _ _iw—h+1/1—(wh/c)2EEp(w) (10)

p j(w) 4
and

Lle)_ O T by = £ o), (1

gw)

respectively. This is obtained by taking the Fourier transform of Eq.(3), thus
resulting in a difference equation for 4 (w). This equation is solved by solving the
corresponding quadratic characteristic equation whose two roots are (10) and (11).

Sinusoidal wave propagation may exist for frequencies less than the cut-off fre-
quency @, given by

=1 or w,= (12)

The group velocity of solutions of p type (in || <w,) is positive: these are right-
going solutions. The group velocity of solutions of ¢ type is negative: these are left-
going solutions.

When a rightgoing solution arrives from D at the boundary, it is partially reflec-
ted toward D as a leftgoing solution. An expression of this is given by the amplitude
reflection ratio p(w), obtained by taking the #-Fourier transform of the boundary
equation (4), and then solving for §o(w)/po(w).

To obtain the corresponding relations in the fully discrete case, one has to work
with discrete ¢-Fourier transforms

Uw)y=4r Y T (13)

n= —oo
One then takes the discrete Fourier transform of Eq. (5). Solving for u;, {(w)/u(w)
in interior points results in a quadratic characteristic equation which is identical to

that of the semi-discrete case, save for the replacement of w by u(w), the spectral
function or symbol of the operator M, defined as

. M Z _eiwnAI )
lu(w)z——(—ei);W—=M(e‘“""). (14)
Accordingly, we have in the fully discrete case
Wi ={p}+ 14} (9a)
Piealw)  p(w)h _(u(w)h T
@) e ! ) =E, (), (10a)

g (@) _ )k - <u(w) h
'g(w) ¢ ¢

) = £ (o)), (11a)
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Fig. 1. Amplitude reflection ratio for the 2-point equation (40):
p(u(@)) = (/T= (@(@)hic)) = 1/(/1— (mw)(h/c)* +1).

where EP and Eq are the same operators as in (10) and (11), except for the dif-
ference in arguments.
In the particular case of the Crank-Nicolson method we shall have

2 wAt
=—1 — . 1
)= tan (21 (15)
The cut-off frequency is given in the fully discrete case by
h
plw)—=1 (16)
¢
or (Crank—Nicolson case)
2 A
w0 = arctan (cz_ht) (16a)
3. ENERGY

The energy (or square of the /, norm) of {u;} on D is defined as:

g,=h Y |ul% (17)
j<0
It may be expressed in Fourier space by the appropriate form of Parseval’s relation

__n/h —_ ié__ nlh ijé
=l forg=]MOrS (18)
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where u(£) is the discrete x-Fourier transform of the set {u,} defined as

UE=hY ue (19)
j<0
We note that those relations are generally given for functions defined on ( — oo, ).
That they also apply in the case of a semi-infinite domain such as D may be verified
by simply assuming that the domain of definition is still (—co, c0), but that the
numerical value of u is zero outside of D. (This remark shall also apply to the ¢-
Fourier transforms used in (27), (28).)
The relationship of the wave number ¢ to the frequency  is given by the disper-
sion relation which is

w= —%sin(éh) (20)

in the semidiscrete case, and

H(w) = = sin(¢h) 1)

in the fully discrete case. That u(w) is real for all w in the Crank-Nicolson case
results in the fact that energy is conserved in D: the fully discrete scheme is energy
conservative, and the only changes in ¢, are those which may result from energy
flow across the boundary.

The x-Fourier transform of rightgoing solutions has its support in |£,| € [0, n/2h)
and that of leftgoing solutions in |, | e (n/2h, n/h]. This results in the important
property that the leftgoing and rightgoing components of the energy are separated
in Fourier space as

n2h d wh d

em [ HOP S [ @or S

0 T n/2h n
=£p+sll' (22)

As for g,, both g, and &, are constant except for changes which may result from
energy flow across the boundary.

4. INVARIANCE THEOREMS

We may now state the energy reflection invariance theorems which are the main
results of this paper:

Consider the semidiscretization (3) of (2) on the semi-infinite domain (1) with
the semidiscrete equation (4) used at the outflow boundary x = 0. Consider also the
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numerical integration of these semi-discrete equations by the Crank—Nicolson
method.

When initial data {u;(0)} are imposed on D, the subsequent solution consists of a
leftgoing and a rightgoing component. The rightgoing component of {u,(0)} is par-
tially reflected at the boundary as a leftgoing solution and one may measure the
performance of # by the smallness of the reflected energy

eg=lim &Y |q7.)7 (23a)

R Y

or by the smallness of the energy remaining in D,

er=ed+ex=1lim h Y |u'|’, (23b)
=0 J<0 ’

where &) is the energy in the leftgoing component of {u,(0)}. In that respect, we

shall prove that:

THEOREM 1. The total energy reflected by & is, for a constant h, independent of
the value of At, and is strictly equal to €% for the semidiscrete model.

A second theorem concerns convergence rates. Let {u,(0)} be obtained by sampling
an initial u(x, 0) at the mesh points x, = jh and let # - 0. We may define an optimal
boundary equation # as one which maximizes the rate of convergence to zero of
the reflected energy in the semidiscrete case (3), (4). Then,

THEOREM 2. The convergence rates of # when h— 0 in the energy norm of the
reflected solution for the semidiscrete and the fully discrete schemes are identical (and
is, in the fully discrete case, independent of values taken by the ratio At/h). A boun-
dary formula % which is optimal for the semidiscrete equations remains optimal for
the corresponding full-discretizations.

5. PROOF OF THEOREM 1

Reflection at the Boundary in the Semidiscrete Case

Consider an initial solution {u,(0)} in D. Its rightgoing component will, for large
t, have passed entirely through the boundary point x =0, where it will have been
partially reflected into D as a leftgoing solution. We consider the semi-discrete case
at first:

If po(w) and §o(w) are the t-Fourier transforms of the incident and reflected
solutions in x =0, then the amplitude reflection ratio—obtained by taking the ¢-
Fourier transform of (4) and using (10) and (11)—is found to be

_Gol®)  iw—by—b E ()= -
p(w)_ﬁo(w)_ iw—by—b,E, (w)—

(24)
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During reflection, each rightgoing sinusoidal component of wavenumber |,| in
[0, n/2h) generates a leftgoing sinusoidal component of wavenumber |£,| in
(n/2h, n/h] corresponding to the same value of w through the dispersion relation
(20), ie.,

18yt =7—1,1 (25)

i
h
where ¢, and ¢, have the same sign.

Moreover (also through the dispersion relation), the corresponding group
velocities may be verified to satisfy

G(E,) = —G(<,) (26)

If'p(¢,, 0) is the x-Fourier transform of the rightgoing component of {u;(0)}, then
its amplitude is related to that of the r-Fourier transform of the resulting po() as
the boundary by the relation which is a consequence of energy conservation [7]

| Po(w)l =1P(E,, 0)/G(C,)I. (27)

Likewise, if o(w) is the r-Fourier transform of the reflected solution at the boun-
dary, then its amplitude is related to that of the resulting gx(&,, t} by [7]

lim 1GR(Cy, 1)/G(E ) = |Go(@)]. (28)
We may combine these results to give
tlirrgo lg (€, D= 1p(£,)P(E,, 0) G(E,)/G(E,)]

= |p(<,)P(,, 0)ls (29)

where p(&) (instead of p(w)) is derived with the dispersion relation (20), ie., by
substituting —(c/4) sin{&h) for w in the expression (24) of the reflection ratio,

p(E)=p (w= —%sin(éh)> — (&) (30)

(the subscript s refers here to the semidiscrete case). What this establishes is that
the amplitude of the reflection ratio also applies to the amplitude of x-Fourier
transform in =0 and 7 — oo, respectively. And the total energy reflected at the
boundary may therefore be expressed as

o M . n/h ~— dé
£55=lim h Tl = lim [ (e, 02 =

j<0 n/

=/2h d
= @rmeor s (31)



REFLECTION AT NUMERICAL BOUNDARIES 275

Reflection at the Boundary in the Fully Discrete Case

The mathematics leading to the derivation of (30), (31) may be repeated iden-
tically in the fully discrete case, with u(w) replacing w, and we obtain for the
amplitude reflection ratio (the subscript F refers here to the fully discrete case)

prw)=p(uw))

() —bo—b E; (pw))— -+’

(32)

which is identical to (24), except for the difference in arguments. We may express
the energy reflected at the boundary by the equation which corresponds to (31),

. ) wh o dc
sie=lim b Y Il = lim [* 17301
Jj<0 dé / (33)
n/2h —
= PO1rS,
(] 4

where p () is to be derived from p(w) by use of the dispersion relation (21). That
is, u(w) is to be replaced by —(c/h)sin(¢h). But we may observe that the
corresponding expression is identical to (30) obtained in the semidiscrete case,

C
p &)= pp ulw) = ——sin(éh))
< h (34)
—p(&).

That is, the amplitude reflection ratio (in x-Fourier space) for the full- and
semidiscretizations are identical. Thus, the expression of the reflected energy is (31)
in the fully discrete as well as in the discrete cases, and, therefore

R r=EZs (35)

which proves the theorem.

6. CONVERGENCE RATES AND PROOF OF THEOREM 2

The proof of Theorem 2 is of course contained in (35), but deserves some
amplification:

Consider an initial U(x, 0) in D, and the discrete set obtained by its sampling
{u0)} = U(jh, 0).

In general, the Fourier transforms u(¢, 0) and U(¢, 0) will differ: components of
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U(¢, 0) beyond the sampling wavenumber |&,| = n/k are folded into || € |0, 7/h| by
the sampling relation. But the difference, measured in an energy norm, becomes
negligible when 4 — 0 for any well-behaved U(x, 0).

The initial (&, 0) is separated into its leftgoing and rightgoing components by
the wave number |£.|=n/2h. When h— 0 then |£.| - oo and here also the dif-
ference between {u?} and {p;,(0)} becomes negligible. We may thus write in the
energy norm:

10(&, 0) =PI, 0)If, = O(h*¥), (37)

where k is a large number for any well-behaved U(x, 0). Therefore, we may analyze
convergence rates of the reflected solutions at the boundary when # - 0 by (31) or
(33) with (¢, 0) replacingp(&, 0) or pﬁo(é). It may then be verified algebraically that
the rate of convergence to zero of the reflected energy at the boundary is twice that
of p(¢) when &h — 0, which is the same as twice that of p(w) when wh — 0.

One may define optimal boundary equations as those which, for a given number
of terms in (4), maximize the order of the corresponding reflection ratio (examples
of such high-order boundary equations may be found in [9]). From (35) it follows
that both rates of convergence and optimally are preserved when one goes from the

semidiscrete to the corresponding fully discrete case. Which proves Theorem 2.

7. NUMERICAL EXPERIMENTS

Smooth solutions may be considered as wave packets of wavenumber &, — 0.
To these correspond reflected solutions of wave number |, | — n/h. These reflected
solutions are modulated sine functions, of wavelength 4 — 2h, with a characteristic
sawtoothed appearance. This case is treated in the following numerical example:

The Gaussian initial function

U(x, 0)=e AN =xlol ' 50 g =10 (38)
was prescribed on the domain
D=[-100,0] (39)

on which U,+ c¢U,=0 is approximated by (3) with #=1 in D, and the two-point
equation:

dug Ug—U_y\
dt+c( ; )—0 (40)

at the downwind boundary. Time marching is implemented with the
Crank—Nicolson method. Initial conditions for the numerical calculation are
obtained by sampling U(x, 0) at the mesh points.
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Some comments are in order. First, it may be verified that the energy of the
Gaussian (38) which lies outside of the finite domain D is less than 10~'° times its
total energy. Second, the energy of the Fourier transform of U(x, 0):

.

016,03 = Br e 077 "

which lies outside of the p band |&,] € [0, n/2h) is less than 10~ "' times this total
energy. The asymptotic approximations

'q(¢,0)=0, (43)

thus hold to within the accuracy of the calculation (8 significant digits). The time
evolution of the numerical solution is illustrated in Fig. 2.

time

FIG. 2. Partial reflection of a smooth solution at the boundary (two point boundary equation (40),
Courant number R =0.1). Both incident and reflected solutions are wave packets, of wave number near
&,=0, and &, =n/h, respectively. The group velocity of the reflected solution is G (@ =0)= —C. Its
phase velocity is zero.

581/63/2.3
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Both incident and reflected wave packets have, to within computing accuracy, a
finite support in D. This fact is illustrated in Fig. 3 giving the measured energy

er=hy |ul? (44)

Jj<0

versus time (see also Table I), which verifies the zero time-derivative of £, near =0
(when the initial solution has not vet reached the boundary) and after ¢ =80 when
reflection has been compileted.

The asymptotic value of the reflected energy (measured by (44) for large n)
agrees to within arithmetical accniracy with the integral (31) evaluated by numerical
quadrature (€% =1.37509...10%).

Verification of Theorem 1 is obtained by repeating the calculation with values of
At corresponding to a Courant number

R (45)

H

cAt
h

varying from R=0.05 to R=7.0. The variation of the energy with time measured
with (44) (see Fig. 4 and TableI) shows that, as expected, the nature of the
numerical solution is affected by changes in At. But the asymptotic value of the
reflected energy % is indeed an invariant.

energy

time

0 10 20 30 40 50 60 70 80 90 100 t

Fic. 3. Energy versus time for the example illustrated in Fig. 2. The final value of £ (which is the reflec-
ted energy) does not show on this figure (linear scale) but appears clearly on Fig. 4 (logarithmic scale).
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TABLE I

of the Invariance of the Reflected Energy to Time-Discretization

279

TIME R=0. 05
o 17. 7243383090
10 17. 7245384519
20 17. 7233907194
3o 17. 6942372434
40 16. 7225034028
50 10. 4718970857
&0 2. 0632558711
70 0. 0454293388
80 Q. 0013977403
90 0. €013753155
100 0. CO13750998
110 Q. 0013750954
12 0. 0013750763
13¢ 0. 0013750942
140 0. 0012750963
150 0. COI3730963
160 0. CO13750963
170 0. 0013750963
iB80 ©. 00137320963
i90 0. 0013750943

R=0.1

7243385050
. 7285384516

72833903938
. 6942171350
7226600849
4730035843
046448535210
0453787107
0013987422
0013753248
00137510C0
0013750964
0013750963
00137509463
0013750963
00137309463
0013750963
00137%09463
Q013730963
0013750963

e
Ot NN

0CCO0O0VOAAO0OOTN

0000000 DOOOOONOENNNN

R=0.25

. 7243383090
. 7245384500
. 7243881192
. 69407656826
. 7237429103

4887087043
0731317144
D450523667
00140465798
Q013753994
0013751014
0013750964
0013750963
0013750963
Q013730963
0013730963
0013750963
00137507963
0013720963
0013750963

o e e b et
O NNNN

opepoopoooOOON

R=0. S

. 7243383050
. 7245384433
. 7243798356

6935774971

. 7273326079

5404333743
1045331011
0438906744
00144738543
0013758453
0013751115
0013750965
0013750963
0013750963
0013730963
0013730963
0013750943
0013730963
0013730963
0013750963

/=1.0

7243383090
. 7243384114
7233443377
. 6716243278
. 7815916457
7376944302
2380626428
0410381092
0018708281
0013850574
0013754591
0013751130
0013750970
0013730964
0013750963
0013730963
0013750963
0013730963
0013730963
0013750943

-
o NNNN

cooooovocooDoOm

-
19

17.

-
NN

cao0o00o0OO00W

R=2.5 R=5.0
.7 70 17. 72 70
7243377037 17. 7243172986
. 7239976837 17. 7218880673
. 6795483015 17. 6499373532
. B094617482 16. 7156909154
. 8139470243 13. 6081147130
34634704798 6. 8504879258
1243621968 1. 5600331854
0320874613 Q. 8034780424
00497274789 0. 3669547926
0021635676 Q. 1483119093
0016504968 0. 1513534948
0014330113 0. 0413352138
0013855910 ©. 0429712909
0013770067 0. 01323383%
0013733360 0. 0133306622
0013732239 0. 0054693823
0013731383 0. 00475064622
0013731092 0. 0031063124
0013731020 0. 0022183865

Note. These numbers, which contain those used to obtain Fig. 4, have been
integration of (3}-(40) with the Crank-Nicolson method, 4 = constant and variable 4¢ or R. The final
value €2 =1.375..10"3 is also obtained to within arithmetical accuracy by numerical quadrature of

(31-(41).

cnergy

logarithmic

scale

obtained by numerical

time

160 180

200

F1G. 4. Energy vs. time for the same numerical experiment repeated for increasing values of At (or

Courant number R).
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8. DiscussiON OF OTHER CASES

While the invariance theorems have been established for the 3 point central dif-
ference Crank—Nicolson method, their applicability extends obviously beyond that
simple case. A first case of interest is the leapfrog method of time marching which is
also of the form (5) with M given by

Z-7""
M=———. 46
24t (46)
Its spectral function is
(@)= sin{wAt) 47
wow)= YTHR (47)

This method, used with the central difference discretization (3) is known to be
stable when R< 1. That u(w) is real (when stability exists) indicates that this
method is also energy conservative in D. But to each & there corresponds now
through the dispersion relation two values of the frequency w. One is in

[ <w(.=zj—tarc sin{ R) (48)

(which may be called the consistent band) and the other is in

T

T
I, = 4
awne[m “’“m] (49)

(which may be called the spurious band). There are four types of fundamental
solutions: two with positive group velocities, and two with negative group
velocities. Rightgoing solutions in the consistent band are reflected as leftgoing
solutions with an amplitude reflection ratio p-(w) given by (32). Rightgoing
solutions in the spurious band corresponding to the same pair £, — ¢, are reflected
with an amplitude reflection ratio equal to 1/p (w).

In particular rightgoing solutions in the spurious band corresponding to ¢,=0
have an infinite reflection ratio at the boundary: This results in numerical instability
[3, 4]. While one could argue that Theorems 1 and 2 continue to apply to solutions
restricted to the consistent band (and one can, indeed, construct such solutions),
numerical instability in the other band makes the argument somewhat academic.

But one may find other energy conservative time marching methods for which
the theorems continue to apply strictly. A sufficient condition is that the
corresponding u(w) be a single-valued real monotonic function of w. (consistency
requires also that u(0)=0; p'(0)=1.)

An example is given by the method which consists in dividing 4r in two nonequal
intervals

pat and (t—-p)4t (0<p<0.5) (50)
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and using the Crank-Nicolson algorithm over each subinterval, resulting in
M2 4 (Zﬂ—l (Z“”—l)
Bl =By AP \ZP +1)\Z' P +1)°

4 Bw 4t (1—B)wdr\]"?
o= grr=przon (557 wn (57 | el

The case of nonenergy conservative methods is also of interest. An exampie is given
by the first-order Adams method:

wiyt=ul+ AtA* - u,

.o (52)
it =ul+ AtA* ul s,
which may also be expressed as
Wt —ul=[AIA* + (41A*)*] ul. (53)

This method is known to be numerically stable with (3) when R< 1. But it is
energy dissipative. Moreover, we may observe that it is not of the separable form

Eg

refiected energy
logarithmic scale

-3 \l

1074 ® = Adams’ first order =
B = conservative
1079
10710
" 0.5 1 2 5 10 20 1/h
2 1 0.5 0.2 0.1 0.05 h

Fig. 5. Comparison of the reflected energy for the Adams first-order (dissipative) and the conservative
(semi-discrete or Crank—Nicolson) methods. Initial conditions are those of Fig. 2 (or Eq. (38)). Courant
number R =04 in all cases. The difference of reflected energies goes to zero as h — 0 verifying the same
rate of convergence for both. £ is measured in =100 in the Adams case, and computed by numerical
quadrature of (31)-(41) in the conservative case.
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(5). Theorem 1 ceases to hold, but Theorem 2 may be shown to still apply modulo
a minor modification of definition as follows:

Let U(x, 0) be (save for possible remainders of negligible energy) of finite support
near x=0. in D and of finite support near £ =0 in x-Fourier space, i.¢.,

UE 0)~0  when [&]>a,

(54)
Ux,0)~0 when x< —¢
( and 0 positive and finite). For some small 4, there is then a finite time 7 at which
reflection is completed (except for a possible remainder of negligible energy). Also,
stability of (52) requires that 4t — 0 as A — 0, and solutions of that equation tend to
solutions of (3), (4) in te [0, t]. Theorem 2, which is concerned with convergence
rates, may be shown to hold, provided that &, be defined in =7 instead of 1 —» .
The proof is reasonably straightforward and shall be omitted. Given in Fig. S,
however, is an experimental verification of this interesting result. It is of course the
case that these theorems may be extended to other spatial discretization schemes,
but this may require a modification of the definition of energy. One may find in
[10] the underlying mathematics which apply to the case of semidiscretizations
obtained with linear finite elements, where such a modified form of conserved
energy is found.
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